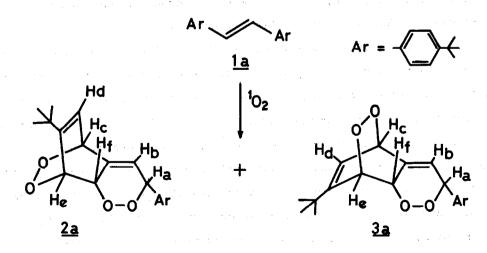
Tetrahedron Letters No. 27, pp 2329 - 2332, 1977. Pergamon Press. Printed in Great Britain.

THE 1,4-CYCLOADDITION OF SINGLET OXYGEN TO STILBENES AND β -methylstyrenes

Masakatsu Matsumoto, Satoshi Dobashi, and Kiyosi Kondo Sagami Chemical Research Center

Nishi-Ohnuma 4-4-1, Sagamihara, Kanagawa 229, Japan (Received in Japan 21 April 1977; received in UK for publication 23 May 1977)


Sensitized photooxygenation of stilbene¹ and β -methylstyrene² has been reported to induce oxidative double bond cleavage and afford benzaldehyde as the final product. On the other hand, cyclic styrene derivatives, such as indenes³ and dihydronaphthalenes,⁴ and certain 1,1-diphenylethylenes⁵ have recently been found to undergo the 1,4-cycloaddition of singlet oxygen (${}^{1}O_{2}$) onto the β -position of the side chain and \underline{o} -position of the aromatic ring. The above differences of the behaviors between two types of arylethylenes prompted us to reinvestigate the sensitized photooxygenation of stilbenes and β -methylstyrenes including unsubstituted ones in carbon tetrachloride.

The 1,4-cycloaddition of ${}^{1}O_{2}$ to the vinyl-substituted aromatics occurred to give the tricyclic peroxides, competing with the other oxygenation modes such as 1,2-dioxetane formation and/or "ene" reaction.

A solution of 1.40 g of $\underline{\text{trans}}$ -4,4'-di- $\underline{\text{tert}}$ -butylstilbene (<u>la</u>) and 5 mg of tetraphenylporphine in 70 ml of CCl₄ was irradiated externally with eight 60-W low-pressure sodium vapor lamps (National SOI-60) under an oxygen atmosphere until the color of the sensitizer was faded (4 hr, 0₂ uptake = 130 ml). After irradiation, the photolysate was condensed under reduced pressure and chromatographed on silica gel (Wako C-200). Elution with benzene gave 682 mg of unreacted <u>la</u>, 360 mg (41% yield based on the reacted <u>la</u>) of a peroxide <u>2a</u> (colorless leaflets, mp 122 - 123°C, from ether), and 215 mg (25%) of <u>3a</u> (colorless granules, mp 127 - 128°C, from a <u>n</u>-hexane - ether mixture), successively. The structures of 2a and 3a were assigned on the basis of their

2329

spectral properties and combustion analyses. The NMR spectrum⁶ (δ in CDCl₂) of 2a displayed two singlets at 1.16 (9H) and 1.29 (9H), and six multiplets centered at 4.57 (1H, H_f), 4.95 (1H, H_c), 4.99 (1H, H_c), 5.31 (1H, H_a), 6.17 (1H, $H_{\rm h}$), and 6.28 (1H, $H_{\rm d}$) ppm with their coupling constants: $J_{\rm ab} = J_{\rm be} = 2.6$, $J_{bc} = 1.0$, and $J_{cd} = 6.0$ Hz. Whereas, the NMR spectrum (δ in CDCl₃) of <u>3a</u> showed two singlets at 1.11 (9H) and 1.29 (9H), and six multiplets centered at 4.96 (1H, H_{p}), 5.05 (1H, H_{c}), 5.31 (1H, H_{f}), 5.36 (1H, H_{a}), 5.67 (1H, H_{b}), and 6.46 (lH, H_d) ppm with their coupling constants: $J_{ab} = 2.6$, $J_{af} = 1.5$, $J_{cd} =$ 6.5, $J_{de} = 2.3$, and $J_{ef} = 3.5$ Hz. The other physical properties of 2a and 3awere as follows; 2a: IR (KBr) 1048, 1038 cm^{-1} ; MS (m/e) 356 (M⁺, 5), 338 (25), 323 (27), 307 (15), 161 (100), 118 (12), 57 (40). Anal. (C₂₂H₂₈O₄) C 74.09, H 7.96. 3a: IR (KBr) 1068, 1039 cm⁻¹; MS (m/e) 356 (M⁺, 2), 324 (11), 322 (13), 307 (15), 295 (31), 161 (100), 118 (12), 57 (55). Anal. (C₂₂H₂₈O₄) C 74.57, H 7.57. The structures of 2a and 3a were further confirmed by the use of the NOE technique; in 2a, on irradiation of the tert-butyl signal (at 1.16), a 19% signal increase was observed for H_f proton signal. While in <u>3a</u>, an NOE was scarcely observed between the tert-butyl group and the H_f proton. In this photooxygenation, 4-tert-butylbenzaldehyde (4a) was scarcely formed.

Similar irradiation of <u>trans-4,4'</u>-dimethylstilbene (<u>1b</u>) gave a mixture of the corresponding peroxides $2b^7$ and 3b together with <u>p</u>-tolualdehyde (<u>4b</u>) (8%). When <u>trans</u>-stilbene (<u>1c</u>) was similarly photooxygenated, the corresponding

endoperoxide $\underline{2c}$ was also obtained,⁸ though the major product was benzaldehyde ($\underline{4c}$) (80%), which has been reported to be the sole product in previous work.¹ These results are summarized in Table I together with those of β -methylstyrenes. From the facts described above, it is clarified that, in the sensitized photo-oxygenation of stilbenes, the 1,4-cycloaddition of ${}^{1}O_{2}$ onto the diene system comprised of the ethylenic double bond and an aromatic double bond competes with the 1,2-cycloaddition of ${}^{1}O_{2}$ onto the ethylenic unsaturation. Furthermore, the addition of ${}^{1}O_{2}$ by 1,4-mode seems to be the more favorable than that by 1,2-mode, when the more electron-donating substituent is present on the p-position of the aromatic ring of stilbenes.

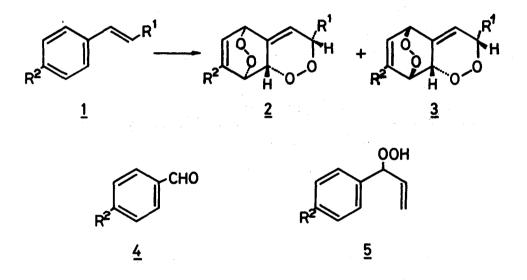
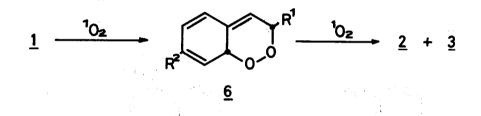



Table I. Endoperoxides of stilbenes and β -methylstyrenes.

<u>1</u>		R ²	Yield (%)			Mp (°C)	
	R ¹		<u>2</u>	3	<u>2</u> + <u>3</u>	2	<u>3</u>
b	<u>р</u> -СН ₃ •С ₆ Н ₅	CH3	11	10	22	113-4	115
с	C6 ^H 5	н	16		16	103-5	
đ	CH ₃	tert-C4H9	16	40	56	72-4	110-2
е	сн ₃	сн ₃	24	16	40	108-10	88-90
f	сн ₃	н	13	10	23	91-3	103-5

Similarly, sensitized photooxygenations of $4-\underline{tert}$ -butyl- (<u>1d</u>) and $4-\underline{methyl}$ -<u>trans</u>- β -methylstyrene (<u>1e</u>) were carried out; in both cases, the corresponding stereoisomeric mixtures of the peroxides were obtained as shown in Table I. Unsubstituted <u>trans</u>- β -methylstyrene (<u>1f</u>) was also photooxygenated to give the corresponding endoperoxides <u>2f</u> and <u>3f</u>. In these photooxygenations of β -methylstyrenes, the corresponding benzaldehyde <u>4</u> (10-15% yield) and a little of the allylic hydroperoxides <u>5</u> due to the "ene" reaction (~3%) were also formed. As it is evident from the results in Table I, there was observed a similar tendency of the substituent effects to those of stilbenes in the reactivity of β -methylstyrenes with ¹O₂. The peroxides <u>2</u> and <u>3</u> may be formed through the intermediate <u>6</u>. This type of the intermediate has been suggested in the sensitized photooxygenation of indenes, dihydronaphthalenes, and 1,1-diphenylethylenes, in which the type of final products is different from <u>2</u> and <u>3</u>.³⁻⁵

References and Notes

- (1) G. Rio and J. Berthelot, Bull. Soc. Chim. Fr., 3609 (1969).
- (2) (a) K. Gollnick, Advan. Photochem., <u>6</u>, 1 (1968); (b) E. Koch, Tetrahedron,
 24, 6295 (1968).
- (3) P. A. Burns, C. S. Foote, and S. Mazur, J. Org. Chem., 41, 899 (1976).

(4) P. A. Burns and C. S. Foote, ibid., 41, 908 (1976).

- (5) (a) C. S. Foote, S. Mazur, P. A. Burns, and D. Lerdal, J. Am. Chem. Soc.,
 <u>95</u>, 586 (1973); (b) G. Rio, D. Bricout, and L. Lacomb, Tetrahedron, <u>29</u>,
 3553 (1973).
- (6) TMS was used as internal standard.
- (7) All the endoperoxides 2 and 3 gave satisfactory analytical data.
- (8) Another peroxide <u>3c</u> could not be obtained.